Electrically-driven Domain Wall Motion in Quantum Anomalous Hall States
نویسندگان
چکیده
منابع مشابه
Metal-to-insulator switching in quantum anomalous Hall states
After decades of searching for the dissipationless transport in the absence of any external magnetic field, quantum anomalous Hall effect (QAHE) was recently achieved in magnetic topological insulator films. However, the universal phase diagram of QAHE and its relation with quantum Hall effect (QHE) remain to be investigated. Here, we report the experimental observation of the giant longitudina...
متن کاملImaging of Coulomb-driven quantum Hall edge states.
The edges of a two-dimensional electron gas (2DEG) in the quantum Hall effect (QHE) regime are divided into alternating metallic and insulating strips, with their widths determined by the energy gaps of the QHE states and the electrostatic Coulomb interaction. Local probing of these submicrometer features, however, is challenging due to the buried 2DEG structures. Using a newly developed microw...
متن کاملRashba Torque Driven Domain Wall Motion in Magnetic Helices
Manipulation of the domain wall propagation in magnetic wires is a key practical task for a number of devices including racetrack memory and magnetic logic. Recently, curvilinear effects emerged as an efficient mean to impact substantially the statics and dynamics of magnetic textures. Here, we demonstrate that the curvilinear form of the exchange interaction of a magnetic helix results in an e...
متن کاملInertia-Free Thermally Driven Domain-Wall Motion in Antiferromagnets.
Domain-wall motion in antiferromagnets triggered by thermally induced magnonic spin currents is studied theoretically. It is shown by numerical calculations based on a classical spin model that the wall moves towards the hotter regions, as in ferromagnets. However, for larger driving forces the so-called Walker breakdown-which usually speeds down the wall-is missing. This is due to the fact tha...
متن کاملQuantum anomalous Hall state in bilayer graphene
Citation Nandkishore, Rahul, and Leonid Levitov. "Quantum anomalous Hall state in bilayer graphene. Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. We present a sy...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Physical Society of Japan
سال: 2019
ISSN: 0031-9015,1347-4073
DOI: 10.7566/jpsj.88.083704